Functional Significance of Medial Olivocochlear System Morphology in the Mouse Cochlea

نویسندگان

  • So Young Park
  • Jung Mee Park
  • Sang A Back
  • Sang Won Yeo
  • Shi Nae Park
چکیده

OBJECTIVES Baso-apical gradients exist in various cochlear structures including medial olivocochlear (MOC) efferent system. This study investigated the cochlear regional differentials in the function and morphology of the MOC system, and addressed the functional implications of regional MOC efferent terminals (ETs) in the mouse cochlea. METHODS In CBA/J mice, MOC reflex (MOCR) was assessed based on the distortion product otoacoustic emission in the absence and presence of contralateral acoustic stimulation. High, middle, and low frequencies were grouped according to a mouse place-frequency map. Cochlear whole mounts were immunostained for ETs with anti-α-synuclein and examined using confocal laser scanning microscopy. The diameters of ETs and the number of ETs per outer hair cell were measured from the z-stack images of the basal, middle and apical regions, respectively. RESULTS The middle cochlear region expressed large, clustered MOC ETs with strong MOCR, the base expressed small, less clustered ETs with strong MOCR, and the apex expressed large, but less clustered ETs with weak MOCR. CONCLUSION The mouse cochlea demonstrated regional differentials in the function and morphology of the MOC system. Strong MOCR along with superior MOC morphology in the middle region may contribute to 'signal detection in noise,' the primary efferent function, in the best hearing frequencies. Strong MOCR in spite of inferior MOC morphology in the base may reflect the importance of 'protection from noise trauma' in the high frequencies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for direct cortical innervation of medial olivocochlear neurones in rats.

We have investigated the morphological relationship between auditory cortex efferents and medial olivocochlear neurones. Using combined retrograde and anterograde tracing we describe close contacts between medial olivocochlear neurones and corticofugal terminals in the ventral nucleus of the trapezoid body. The data indicate a possible direct action of the auditory cortex on the activity of the...

متن کامل

Contralateral Acoustic Effect of Transient Evoked Otoacoustic Emissions in Neonates.

Contralateral acoustic stimulation (CAS) has the effect of reducing the amplitude of transient evoked otoacoustic emissions (TEOAE) of the opposite cochlea. This phenomenon is considered to be mediated via the efferent pathway, from the superior olivary complex through the medial olivocochlear system to the contralateral cochlea. The assessment of this suppressive effect provides an objective a...

متن کامل

Morphological and physiological effects of long duration infusion of strychnine into the organ of Corti.

Acute strychnine administration has long been used as a method to eliminate the effects of efferent activity. It has been shown that long after termination of chronic strychnine infusion into the cochlea, the ear becomes more susceptible to acoustic trauma suggesting that chronic strychnine infusion results in long lasting or permanent disruption of efferent function. Much research has been dir...

متن کامل

Centrifugal pathways protect hearing sensitivity at the cochlea in noisy environments that exacerbate the damage induced by loud sound.

Loud sounds damage the cochlea, the auditory receptor organ, reducing hearing sensitivity. Previous studies demonstrate that the centrifugal olivocochlear pathways can moderately reduce these temporary threshold shifts (TTSs), protecting the cochlea. This effect involves only the olivocochlear pathway component known as the crossed medial olivocochlear system pathway, originating from the contr...

متن کامل

Fast and Slow Effects of Medial Olivocochlear Efferent Activity in Humans

BACKGROUND The medial olivocochlear (MOC) pathway modulates basilar membrane motion and auditory nerve activity on both a fast (10-100 ms) and a slow (10-100 s) time scale in guinea pigs. The slow MOC modulation of cochlear activity is postulated to aide in protection against acoustic trauma. However in humans, the existence and functional roles of slow MOC effects remain unexplored. METHODOL...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017